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● Einstein theory: great, beautiful achievement
● It sets a high energy scale (    ), small scales (   )
● At low energies? At very large scales?
● What is the connection between small scales and larges 

scales?

Introduction
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Revolution

● 2011 Nobel Prize: discovery of acceleration at large 
scales

● What drives it accounts for 68% of the total matter 
distribution

● What is it?



  

Cosmological constant

● A cosmological constant consistent with data
● Simplest generalization of GR

● Fundamental constant: prediction from EFT/QFT?

S=∫d 4 x √−g [ M P
2

2
(R−2Λ)]+S m



  

Problem(s)

● What is the phenomenological picture of gravity?
● Can it be interpreted in terms of HEP?
● Vacuum Minkowski solution is lost
● How to connect HEP (very small scale, Minkowski based) 

to LEP (very large scale, curved background)?
● Up to now, no solution to this problem(s)



  

Dark Energy/Modifications of Gravity

● Start to find a dynamical mechanism
● Many possibilities: covariance symmetry
● Pure phenomenological approach

● Set/constrain a model
● Where does it come from?



  

DE as a scalar field

● Minimally coupled scalar field, quintessence

● Mass of quintessence field, 
● In general difficult to accomodate in particle physics

[Frieman et al. 1995; Hall et al. 2005]

S=∫ d 4 x √−g [M P
2 R

2
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Classification of quintessence

● Classified according to evolution [Caldwell, Linder 2005]

● Equation of state parameter 
● In FLRW universe, 

w=
pϕ
ρϕ
=w (ϕ( z))

ds2=−dt 2+a(t )2d x⃗2 , H=ȧ /a

3M P
2 H 2=ρϕ+ρm ,

ϕ̈+3H ϕ̇+V ,ϕ=0 ,
ρ̇m+3H (ρm+ pm)=0 ,

ρϕ≡
1
2
ϕ̇2+V ; ρϕ− pϕ=2V .



  

Constraints from cosmological data

● CMB data (high redshift constraints)
● BAO (low redshift data)
● Supernova Type IA (low redshifts)
● Structure formation, lensing...
● Gravitational waves?



  

Quintessence: thawing models

● Thawing models: frozen at early times
● Typical example V=μ4[1+cos (ϕ / f )]



  

Quintessence: freezing models

● Freezing models: frozen at late times.
● Scaling freezing:
● Typical example:  

w→0→−1

V=μ(eλ1ϕ+λ3 e
λ2ϕ)



  

Alternatives to quintessence & CC

● What if DE is a change of gravity at large scales?
● Modifications of gravity
● The Einstein-Hilbert action is different
● Extra dimensions
● ...



  

f(R) gravity
[Capozziello: IJMP 2002; ADF, Tsujikawa: LRR 2010]

● Phenomenological model
● Working toy models appeared:  

[Hu et al 2007]

[Starobinsky 2007]

[Tsujikawa 2008]

ℒGR= f (R)

f '>0, f ' '>0 , f (0)=0

f
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2 n
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2
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n
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M P
2
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Scalar-tensor theory approach

● Equivalent to the theory described by

● Important mapping: f(R) is a scalar tensor theory
● 1 extra scalar field
● Non-minimally coupled to gravity
● Conformal transformation to Einstein Gravity

S=∫d 4 x √−g [ f (ϕ)+(R−ϕ) f ,ϕ]



  

f(R) Inflation
[Starobinsky '82]

● First ever model for inflation 
● Still compatible with latest Planck data
●

● In particular, order ε non-gaussianities

f (R)=M P
2 [R+R2 /(6M 2)]

nR−1≃0.964 , r≃4×10−3



  

Chameleon mechanism in f(R)

● Lagrangian built such that 
● Then for large R,            , theory reduces to GR
● But for large R, then 
● In the presence of matter, then theory reduces to GR
● Chameleon mechanism

lim
R→∞ f (R)=M P

2 R

R≫H 0
2

R≈−T μμ /M P
2



  

Solar system constraints for f(R)

● Outside star, GR models vacuum
● But in vacuum R = 0, and we would not have chameleon
● However, in reality, outside the star there is still matter
● This matter, though low-density, is enough to provide enough 

Chameleon to evade solar system constraints
● Semi-analytic and numerical work requires n > 0.9

[Capozziello, Tsujikawa: PRD 2008]



  

Chameleon: not always the case

● Other theories of gravity might not need Chameleon
● Gauss-Bonnet gravity:                                   [Nojiri et al 2005]

● On the solar system, even vacuum GR,  
● Do not need outside-matter's Chameleon
● This theory has unstable FLRW background  [ADF et al 2011]

● Other theories, other possibilities

ℒGR=M P
2 R+ f (G) ,

G=12 r s
2
/r 6≫H 0

4



  

Perturbation evolution on FLRW for f(R)

● At large scales deviation from GR becomes evident
● On studying the growth index                     [Starobinsky et al 2011]

● GR: γ = 0.55 and f(R): γ = 0.41. Signature for MGMs
● Enhanced power spectrum (EPS) in linear regime
● In particular, in order to fit the data one requires n > 2
● N-body sims. Chameleon mech tends to suppress EPS.

δ̇m

H δm
=Ωm

γ



  

Extended scalar-tensor theories
● f(R) scalar-tensor theory with non-trivial dynamics
● General f(R): equivalent to
● No kinetic terms (KT)
● A mass term gives mass to the field: no propagating for large mass
● A massless field would be problematic, in general: 5th force 
● What if a theory has no potential (e.g. shift symmetry)?
● What if we include general KT?

ℒ=Φ R−U (Φ) , Φ≡df /d ϕ



  

Galileon theory
[Nicolis, Rattazzi, Trincherini: PRD 2009]

● Inspired by DGP [Dvali et al: PLB 2000]

● Generalized scalar-tensor theory 
● EOMs satisfy Galilean symmetry on Minkowski 
● Model of brane-bending mode
● Needs non-linearities to make it not propagate for SSC
● Vainshtein mechanism

ℒ∋(∂ϕ)
2
∇
2
ϕ/M 3

∂μϕ→∂μϕ+V μ



  

Horndeski theories
[Horndeski 1974]

● This is a generalization of Galileon
● Most general scalar-tensor theory with 2nd order EOMs
● It would model general DE induced by extra dimensions

ℒ=√−g [12 M P
2 R+P (ϕ , X )−G3(ϕ , X )∇ 2

ϕ+ℒ 4+ℒ 5]
ℒ 4=G4(ϕ , X )R+G 4, X [(∇

2
ϕ)2−(∇μ∇ νϕ)(∇

μ
∇

ν
ϕ)]

ℒ 5=G5(ϕ , X )Gμ ν(∇
μ∇ νϕ)−

1
6
G5, X [(∇

2ϕ)3−3∇ 2ϕ(∇μ∇ νϕ)(∇
μ∇ νϕ)]

−
1
3
G5, X (∇

μ
∇αϕ)(∇

α
∇βϕ)(∇

β
∇μϕ). X≡−(∂ϕ)2/2



  

dRGT massive gravity
[de Rham, Gabadadze, Tolley: PRL 2011]

● Introducing 4 new scalar fields: Stuckelberg fields
● Then 4 sc dof, 4 vct dof, 2 Gws dof + 4 SF dof
● Unitary gauge (remove 4 SF dof): 4 sc , 4 vct, 2 Gws dof
● Constraints kill 2 sc dof and 2 vect dof: 2+2+2=6 dof
● dRGT kills one mode, the BD ghost. Finally only 5 dof.



  

No stable FLRW solutions
● FLRW background allowed [E. Gumrukcuoglu, C. Lin, S. Mukohyama: JCAP 2011]

● Late de Sitter solutions exist
● But no stable FLRW exists: one of the 5 dof is ghost

[ADF, E. Gumrukcuoglu, S. Mukohyama: PRL 2012]

● Inhomogeneity? Anisotropies? [D'Amico et al: PRD 2011]
[E. Gumrukcuoglu, C. Lin, S. Mukohyama: JCAP 2011. ADF, EG, SM: JCAP 2012]

● Something else? Introducing other fields: a quasidilaton scalar field
[ADF, Mukohyama: PLB 2013][See also Huang, Piao, Zhou: PRD 2012]



  

Quasi-dilaton massive gravity
[D'Amico, Gabadadze, Hui, Pirtskhalava: PRD 2013]

● dRGT on FLRW: reduction of dof + ghost
● Avoid this behavior by introducing scalar field
● SF interacts with Stuckelberg fields/fiducial metric
● Non-trivial dynamics / perturbation behavior
● May heal the model? Still 2 GWs but massive: dof = 5 + 1



  

Symmetries of the model

● Lagrangian invariant under quasidilaton symmetry

● SFs satisfy Poincare symmetry

● Fiducial metric [ADF, Mukohyama: 2013]

σ→σ0 , ϕ
a
→e

−σ
0
/M

Pϕ
a

ϕ
a
→ϕ

a
+ca , ϕ

a
→Λ

a
bϕ

b

~f μ ν=ηa b∂μϕ
a
∂νϕ

b
−

ασ
M P

2 mg
2 e

−2σ /M
P∂μσ ∂μσ



  

Quasidilaton Lagrangian

● Following Lagrangian

where

ℒ 2=
1
2
([K ]2−[K 2

]) ,

ℒ 3=
1
6
([K ]3−3[K ][K2]+2[K 3]),

ℒ 4=
1

24
([K ]4−6 [K ]2[K 2]+3[K 2]2+8[K ][K3]−6[K4 ]).

Kμ
ν=δ

μ
ν−eσ /M P(√g−1~f )

μ

ν ,

ℒ=
M P

2

2
√−g [R−2Λ− ω

M P
2
∂μσ ∂νσ+2mg

2
(ℒ 2+α3ℒ 3+α4ℒ 4)] ,



  

Background

● Give the ansatz

● Fiducial metric 
● Defining
● de Sitter solution 

ds2=−N 2 dt2+a2 d x⃗2 , φ0=φ0(t) , φi=x i , σ=σ̄(t )

~f 00=−n(t)2 , ~f ij=δij

H=ȧ /(a N ), X=e
σ̄ /M

P /a, r=a n /N

(3−
ω
2 )H

2=Λ+ΛX , ω<6



  

de Sitter solution

● Existence of de Sitter solution
● All expected 5 modes propagate
● Only if                  all the modes are well behaved: no 

ghost, and no classical instabilities.
● This same result can be generalized to general quasi-

dilaton field.

ασ/mg
2>0



  

Scalar contribution

● In the unitary gauge, integrating out auxiliary modes
● 2 scalar modes propagate: one with 0 speed, the other 

with speed equal to 1.
● Ghost conditions

0<ω<6 , X 2
<
ασ H 2

mg
2 <r2 X 2 , r>1



  

Vector and GW contributions

● Vector modes reduced action

● Therefore

● GW reduces action

ℒ=
M P

2

16
a3 N [TV

N 2|Ėi
T|2−k2 MGW

2
|Ei

T
|2] , T V>0

cV
2
=

M GW
2

H 2
r2
−1

2ω
, M GW

2
=
(r−1)X3 mg

2

X−1
+
ωH 2

(r X+r−2)
(X−1)(r−1)

, MGW
2
>0

ℒ=
M P

2

8
a3 N [ 1

N2|ḣij
TT
|
2
−( k2

a2 +M GW
2 )|hij

TT
|
2]



  

Status

● Self accelerating de Sitter solutions exist
● All 5+1 modes propagating
● All of them are stable
● Existence proof



  

Bigravity
[Hassan, Rosen: JHEP 2012]

● Promote fiducial metric to a dynamical component
● Introduce for it a new Ricci scalar
● Degrees of freedom in the 3+1 decomposition:

● Total: (4 sc + 4 vt + 2GW) · 2
● Gauge: 2 sc + 2 vt
● Constraints: (2 sc + 2 vt) · 2 + 1 no-BD-ghost
● Finally: T-G-C => 1 sc + 2 vt + 4 GW



  

Bimetric Lagrangian

● For the two metrics

● Introduce a ghost free action 

where

ds2=gμ νdxμdxν , d~s 2=~gμ νdxμdxν ,

ℒ=√−g [MG
2 (R2−m2

∑
n=0

4
cn V n(Y

μ
ν))+ℒ m]+κMG

2

2
√−~g~R

Y μ
ν=√gμα~g αν ,

[Y n
]=Tr (Y n

), V 0=1 , V 1=[Y ] ,

V 2=[Y ]
2−[Y 2] , V 3=[Y ]

3−3[Y ][Y 2]+2 [Y 3] ,

V 4=[Y ]
4−6 [Y ]2[Y 2]+8 [Y ][Y 3]+3 [Y 2]2−6 [Y 4] .



  

Background dynamics

● Assume FLRW ansatz

● Define
● Existence of two branches [Comelli, Crisostomi, Pilo: JHEP 12]

● Physical branch:  

ds2=a2(−dt2+d x⃗2) , d~s 2=~a 2(−~c 2 dt2+d x⃗2)

ξ=~a /a , H=ȧ/a2

Γ(ξ)(~c a H−~̇a /~a )=0 , Γ=c1ξ+4 c2 ξ
2+6 c3ξ

3

~c=~̇a /(~a a H)



  

GR-like dynamics
[ADF, Nakamura, Tanaka: PTEP 14]

● At low energies, Friedmann equation is recovered

where ξ  ξ→ c when ρm  0→

● The effective gravitational constant is different form the 
bare one, time independent

● Low energy cosmological dynamics consistent with data

3 H 2
=
ρm
~MG

2 , ξ≈ξc , ~M G
2=M G

2
(1+κξc

2
), ~c≈1 ,



  

Solar system constraints?
[ADF, Nakamura, Tanaka: PTEP 14]

● Gravitational potential of a star in he Minkowski limit
● Ansatz

● Defining
● Then at second order, u  0, (Vainshtein mechanism)→

with same effective gravitational constant

ds2=−eu−v dt2+eu+v(dr2+r2 dΩ2), d~s 2=−ξc
2 e
~u−~v dt2+ξc

2 e
~u +~v (d~r 2+~r 2 dΩ2) .

~r=eR(r)r , C=d lnΓ
d ln ξ

, C≫1 ,

∇
2 v≈−

ρm
~M G

2

[Babichev, Deffayet, Esposito-Farese, PRL 11; Kimura, Kobayashi, Yamamoto PRD 12]



  

Graviton oscillations
[ADF, Nakamura, Tanaka: PTEP 14]

● Study propagation of 4 GW – coupled 2 by 2

● Define
● Eingenmodes: one massless and one massive μ
● Graviton oscillations possible

ḧ−∇2 h+m2Γc(h−
~h)=0 ,

~̈h−~c 2∇ 2~h+
m2Γc

κ ξc
2 (h−

~h )=0.

μ
2
=
(1+κξc

2)Γc m2

κξc
2



  

Inverse chirp signal
● For NS–NS:  
● Graviton modes have inverse chirp signal:

arrival time vs frequency reversed for the second (red) mode

h=A (f )eiΦ(f )[B1 e
i δΦ

1
(f )
+B2 e

iδΦ
2
(f )
]



  

Constraints

● Cosmological dynamics similar to GR
● To pass solar system tests: need hierarchy in the 

graviton mass term
● Weak field approximations + 2nd order perturbations

● Black holes? [Babichev, Fabbri CQG 13, 1401.6871]

rV=O ((C r g λμ
2)1/3) , ∇ 2 v=−M̃G

−2ρm



  

Conclusions

● Dark Energy/Gravity: active field of research
● What is gravity?
● Yet, a field to investigate
● Can the graviton (or one of them) be massive?
● Experimental and theoretical research is needed
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